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The goal of this research report is to provide guidance for interpreting annual suicide 
numbers in the military to determine when numbers represent significant spikes.  Using 
data collected between 1990 and 2000, Eaton, Messer, Wilson and Hoge (2006) estimated 
the average suicide rate per year in the US Army to be 12.36 Soldiers per 100,000.  On a 
year-by-year basis, however, the observed rate per 100,000 varies within a predictable 
expected range.  In this research report, we provide a statistical simulation based on the 
binomial distribution that can be used to determine whether an observed suicide rate for 
any given year is within normal expected variability or whether it represents a potentially 
significant increase.  The simulation can be modified to provide specific values for a given 
population (e.g., 60,000 Soldiers in US Army, Europe or 130,000 Soldiers in Iraq) and used 
to focus resources to address this important mental health issue.  Reference tables are 
provided for those without access to the software.  

 
PURPOSE 
Suicides are relatively rare events in the military and 
their absolute numbers vary from year to year. For 
example in a population of 50,000 Soldiers suicide rates 
could vary from 5 suicides to 9 suicides in any given 
year.  The challenge in interpreting these numbers is to 
determine when such numbers represent normal 
fluctuations and when such numbers signal important 
changes. The goal of this research report is to provide 
guidance for interpreting annual suicide numbers to 
determine when numbers represent significant spikes. 
 
BACKGROUND 
In 2006, Eaton, Messer, Wilson and Hoge estimated that 
the annual Army suicide rate between 1990 and 2000 
was 12.36 per 100,000.  Eaton et al. (2006) used this 
estimate to determine the expected number of suicides 
in an Army population of 480,000.  They estimated that 

in any given year, the Army would experience 59 
suicides a year.  Perhaps more importantly, though, they 
also used the estimate to provide some guidelines as to 
when an increase might be considered statistically 
significant.  They reported that values of 73 or higher 
would be strong evidence that a significant increase had 
occurred using a 95% confidence interval. 
 
In this report we build on the work of Eaton et al. (2006) 
and show how statistical simulations can be used to 
identify significant spikes in suicide numbers in military 
populations of different sizes. 
 
BINOMIAL SIMULATION 
Binomial simulations can be illustrated using the same 
logic as the probability underlying a coin-flip.  Coin flips 
can be represented as 1 (heads) or 0 (tails) with a .5 
probability of heads following each flip.  With 100,000 
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flips of the coin, a simulation would expect 50,000 
heads, but the observed number might vary across each 
replication of 100,000 flips.  The code using the open-
source language R (R Development Core Team, 2006) 
available at http://cran.r-project.org/ illustrates this 
process: 

 
In this example, the first simulation came out with 150 
heads fewer than would be expected based on the 
probability of .5 (50,000 – 49,850).  The second 
simulation came up with 40 extra heads. 
 
If the simulation process is run 10,000 times (Simulation 
1, Simulation 2, Simulation 3….Simulation 10,000) the 
results from each of the 10,000 simulations will result in 
a distribution of values.  This distribution can be used to 
estimate what is within normal expected range and what 
is outside of the normal expected range.  The figure 
below shows the histogram for 10,000 runs of the 
simulation process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notice that the peak of this histogram is centered around 
50,000 (in this example the average was 50,002.52).  
Importantly, however, the process also gives some 
indication about what values would be considered 
unexpected.  In this example, only five percent of the 
simulated values were above 50,263 (approximate arrow 
location), so any coin tossed 100,000 times which 
produces 50,264 heads is not behaving like a normal 
coin.  That is, it is more than 95% certain that this coin is 
somehow more prone to come up heads when flipped.  
The original two simulations (one with 150 heads too few 
and one with 40 heads too many) are well within the 
normal expected range. 
 
BINOMIAL SIMULATION APPLIED TO SUICIDE 
RATES 
The same process can be applied to suicide prediction 
rates by changing the probability to 12.36 per 100,000 
instead of using a .5 probability as illustrated with the 
coin example.  Two simulations representing populations 
of 100,000 are illustrated:  

 
The first simulation estimated 5 suicides per 100,000 
and the second estimated 14.  If we run the simulation 
10,000 times instead of two, we observe the following 
distribution of the number of suicides per 100,000 
assuming a rate of 12.36 per 100,000.  The histogram is 
basically equivalent to having 10,000 years of data on a 
population of 100,000 individuals. 
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># Simulation 1 

> TDAT<-rbinom(size=1,prob=.5,n=100000) 

> sum(TDAT) 

[1] 49850 

 

># Simulation 2 

> TDAT<-rbinom(size=1,prob=.5,n=100000) 

> sum(TDAT) 

[1] 50040 

># Simulation 1 

> TDAT<-rbinom(size=1,prob=12.36/100000, 

  n=100000) 

> sum(TDAT) 

[1] 5 

 

># Simulation 2 

> TDAT<-rbinom(size=1,prob=12.36/100000,     

  n=100000) 

> sum(TDAT) 

[1] 14 
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The range of estimated numbers of suicides is from 1 to 
27.  The average is 12.41 (close to the target of 12.36).  
The 95% confidence interval is 19 and above.  This 
means that with 100,000 Soldiers, 19 or more suicides 
would be outside the normal expected range (p<.05). 
Alternatively, given the importance of monitoring 
suicides, it may be useful to adopt a 90% confidence 
interval (p<.10).  In this case, 18 or more suicides would 
be outside the expected range signaling a spike in rates. 
 
ADAPTING THE SIMULATION 

To make the simulation useful in the military, it needs to 
be able to make estimates for different sized 
populations.  For instance, if the Commander, US Army 
Europe (USAREUR) wanted to know if suicide rates 
significantly increased in the previous year, the 
simulation would need to provide an estimate based on 
the USAREUR population. 
 
The two functions in the appendix can be used to make 
predictions for different sized populations.  To illustrate 
the use of the functions, we run the simulation using an 
Army size of 480,000 reported by Eaton et al., (2006).  
The simulation is run 10,000 times as was done in the 
previous examples. 
 
The simulation indicates that the annual expected 
number of suicides for the US Army (population 
480,000) is 59.  The 95% confidence interval is 73 and 

above.  This means that with 480,000 Soldiers, 73 or 
more suicides would be outside the normal expected 

range (p<.05).  The values of 59 and 73 match those 
reported in Eaton et al. (see their Table 3 on page 188). 
Again, it may be useful to adopt a 90% confidence 
interval (p<.10).  In this case, 70 or more suicides would 
be outside the expected range signaling a spike in rates. 
 
TABLE VALUES 
The final table provides annual expected values and 
90% and 95% confidence interval estimates for a range 
of population sizes from 10,000 to 150,000 using the 
simulation program: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IMPLICATIONS 
The simulation procedures and table of expected values 
provide estimates that can be useful to those who want 

> ARMY<-sim.suic(nrep=10000, 

      rate=12.36/100000, 

      popsize=480000) 

> median(ARMY) 

[1] 59 

> quantile.suic(ARMY,c(.90,.95)) 

  quantile.values confint.estimate 

1            0.90               70 

2            0.95               73 

Size of 
Population

Annual 
Expected 

Value

Value to be 
90% 

Confident 
Increase is  
Significant

Value to be 
95% 

Confident 
Increase is  
Significant

10,000 1 4 4
20,000 2 6 6
30,000 4 7 8
40,000 5 9 10
50,000 7 10 11
60,000 7 12 13
70,000 8 13 15
80,000 10 15 16
90,000 11 16 18

100,000 12 18 19
110,000 13 20 21
120,000 15 21 22
130,000 16 22 24
140,000 17 24 26
150,000 18 25 27

Estimated Number of Suicides per 100,000
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to distinguish between normal variations and unexpected 
variations in suicide rates.  Unexpected variations 
warrant careful attention and planning strategies to 
trigger an appropriate community mental health 
response. 
 
The illustrated procedures were based on historical 
Army suicide data, but can easily be adapted for other 
services by changing the “rate” option in the simulation.  
The procedures can also be adapted to detect significant 
decreases in suicide rates.  For example, to be 95% 
confident an Army-wide suicide prevention program had 
significantly reduced the number of suicides, the annual 
suicide rate would need to drop to 48 or fewer.  To be 
90% confident a program had reduced suicides, the 
annual rate would need to drop to 51 (see box below).   
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> ARMY<-sim.suic(nrep=10000, 

      rate=12.36/100000, 

      popsize=480000) 

> quantile.suic(ARMY,c(.05,.10)) 

  quantile.values confint.estimate 

1            0.05               48 

2            0.10               51 
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APPENDIX 

 

sim.suic<-function(nrep, rate, popsize){ 

     OUT<-rep(NA,nrep) 

        for(i in 1:nrep){ 

        OUT[i]<-sum(rbinom(size=1, prob=rate,n=popsize)) 

        } 

      return(OUT) 

} 

 

quantile.suic<-function (x, confint, ...){ 

    out <- data.frame(quantile.values = confint, confint.estimate = rep(NA,  

        length(confint))) 

    cumpct <- cumsum(table(x)/length(x)) 

    lag1 <- c(NA, cumpct[1:length(cumpct) - 1]) 

    lag2 <- c(NA, lag1[1:length(lag1) - 1]) 

    TDAT <- data.frame(agree.val = as.numeric(names(cumpct)),  

        cumpct, lag1, lag2) 

    for (i in 1:length(confint)) { 

        out[i, 2] <- TDAT[TDAT$cumpct > confint[i] & TDAT$lag1 >=  

            confint[i] & TDAT$lag2 < confint[i], 1] 

    } 

    return(out) 

} 


